We propose electrospray-ionization (ESI) mass spectrometry as a robust and powerful method for the in situ analysis of carbanions. ESI mass spectrometry selectively probes the charged components of the sampled solution and, thus, is ideally suited for the detection of free carbanions. We demonstrate the potential of this method by analyzing acetonitrile solutions of 15 different carbon acids AH, whose acidities cover a range of 11.1 ≤ pKa(DMSO) ≤ 29.5. After treatment with KOtBu as a strong base, all but the two least acidic compounds were successfully detected as free carbanions A- and/or as potassium-bound aggregates [Kn-1An]-. The association equilibria can be shifted toward smaller aggregates and free carbanions by the addition of the crown ether 18-crown-6, which facilitates the evaluation of the mass spectra. When KOtBu was replaced by other bases (LiOH, LiNiPr2, NaH, NaOH, KOH, NBu4OH) or when tetrahydrofuran or methanol was used as a solvent, carbanions were also successfully observed. For further demonstrating the utility of the proposed method, we applied it to the analysis of the Michael addition of deprotonated dimedone to butenone. ESI mass spectrometry allowed us to follow the decrease of the reactant carbanion and the buildup of the product carbanion in time.To date, most of the low-molecular-weight gels are found serendipitously, and modification on known gelator structures via organic synthesis is an efficient methodology to prepare gel series. However, a simple, direct, and rational modification method for a known gelator is still a challenge. Herein, we employ Glaser coupling reaction to synthesize a novel dendrimer gelator BisDEC with the (ALS2)2 structure, starting from terminal alkyne-based gelator DEC with the ALS2 structure. This structural change results in gels with distinct gelation solvents, mechanical properties, and stimuli-responsive abilities. The gelation abilities of DEC and BisDEC in nonpolar and polar solvents, respectively, have been examined and discussed by several experiments and Hansen constants. It is also shown that the BisDEC gel system shows intriguing self-healing, self-supporting, and grinding chromism properties.Bioelectronics based on biomaterial substrates are advancing toward biomedical applications. As excellent conductors, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have been widely developed in this field. However, it is still a big challenge to obtain a functional layer with a good electroconductive property, transparency, and strong adhesion on the biosubstrate. In this work, poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-OH) was chemically polymerized and deposited on the surface of a regenerated silk fibroin (RSF) film in an aqueous system. Sodium dodecyl sulfate (SDS) was used as the surfactant to form micelles which are beneficial to the polymer structure. To overcome the trade-off between transparency and the electroconductive property of the PEDOT-OH coating, a composite oxidant recipe of FeCl3 and ammonium persulfate (APS) was developed. Through electrostatic interaction of oppositely charged doping ions, a well-organized conductive nanoscale coating formed and a transparent conductive RSF/PEDOT-OH film was produced, which can hardly be achieved in a traditional single oxidant system. The produced film had a sheet resistance (Rs) of 5.12 × 104 Ω/square corresponding to a conductivity of 8.9 × 10-2 S/cm and a maximum transmittance above 73% in the visible range. In addition, strong adhesion between PEDOT-OH and RSF and favorable electrochemical stability of the film were demonstrated. Desirable transparency of the film allowed real-time observation of live cells. Furthermore, the PEDOT-OH layer provided an improved environment for adhesion and differentiation of PC12 cells compared to the RSF surface alone. Finally, the feasibility of using the RSF/PEDOT-OH film to electrically stimulate PC12 cells was demonstrated.In nature, cellulose nanofibers form hierarchical structures across multiple length scales to achieve high-performance properties and different functionalities. Cellulose nanofibers, which are separated from plants or synthesized biologically, are being extensively investigated and processed into different materials owing to their good properties. Epigallocatechin cost The alignment of cellulose nanofibers is reported to significantly influence the performance of cellulose nanofiber-based materials. The alignment of cellulose nanofibers can bridge the nanoscale and macroscale, bringing enhanced nanoscale properties to high-performance macroscale materials. However, compared with extensive reviews on the alignment of cellulose nanocrystals, reviews focusing on cellulose nanofibers are seldom reported, possibly because of the challenge of aligning cellulose nanofibers. In this review, the alignment of cellulose nanofibers, including cellulose nanofibrils and bacterial cellulose, is extensively discussed from different aspects of the driving force, evaluation, strategies, properties, and applications. Future perspectives on challenges and opportunities in cellulose nanofiber alignment are also briefly highlighted.Accurate counting of single molecules at nanoscale resolution is essential for the study of molecular interactions and distribution in subcellular fractions. By using small-sized carbon dots (CDs), we have now developed a quantitative single-molecule localization microscopy technique (qSMLM) based on spontaneous blinking to count single molecules with a localization precision of 10 nm, which can be accomplished on conventional microscopes without sophisticated laser control. We explore and adapt the blinking of CDs with diverse structures and demonstrate a counting accuracy of >97% at a molecular density of 500 per μm2. When applied to G-protein coupled receptors on a cell membrane, we discriminated receptor oligomerization and clustering and revealed ligand-regulated receptor distribution patterns. This is the first example of adapting nanoparticle self-blinking for molecular counting, and this demonstrates the power of CDs as SMLM probes to reliably decipher sub-diffraction structures that mediate crucial biological functions.Epigallocatechin cost