Blood serum or plasma proteins are potentially useful in COVID-19 research as biomarkers for risk prediction, diagnosis, stratification, and treatment monitoring. However, serum protein-based biomarker identification and validation is complicated due to the wide concentration range of these proteins, which spans more than ten orders of magnitude. Here we present a combined affinity purification-liquid chromatography mass spectrometry approach which allows identification and quantitation of the most abundant serum proteins along with the nonspecifically bound and interaction proteins. This led to the reproducible identification of more than 100 proteins that were not specifically targeted by the affinity column. Many of these have already been implicated in COVID-19 disease.Matrix-assisted laser desorption/ionization source coupled with time-of-flight mass analyzer mass spectrometry (MALDI-TOF MS) is being widely used to obtain proteomic profiles for clinical purposes, as a fast, low-cost, robust, and efficient technique. Here we describe a method for biofluid analysis using MALDI-TOF MS for rapid acquisition of proteomic signatures of COVID-19 infected patients. By using solid-phase extraction, the method allows the analysis of biofluids in less than 15 min.Testing of large populations for virus infection is now a reality worldwide due to the coronavirus (SARS-CoV-2) pandemic. The demand for SARS-CoV-2 testing using alternatives other than PCR led to the development of mass spectrometry (MS)-based assays. However, MS for SARS-CoV-2 large-scale testing have some downsides, including complex sample preparation and slow data analysis. Here, we describe a high-throughput targeted proteomics method to detect SARS-CoV-2 directly from nasopharyngeal and oropharyngeal swabs. This strategy employs fully automated sample preparation mediated by magnetic particles, followed by detection of SARS-CoV-2 nucleoprotein peptides by turbulent flow chromatography coupled with tandem mass spectrometry.The recent COVID-19 outbreak and pandemic of 2020 and its surveillance were implemented by quickly adapting the existing diagnostic methods to detect the SARS-CoV-2 RNA. While traditional methods for detecting pathogenic DNA and RNA have relied heavily on gold standard quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and sequencing-based methods, their shortcomings under resource-limited settings have emphasized the need of developing point-of-care (POC) diagnostics. Clustered regularly interspaced short palindromic repeats (CRISPR)-based detection systems provide a rapid and accurate alternative. Here, we describe a CRISPR-Cas9-based detection system FnCas9 Editor Linked Uniform Detection Assay (FELUDA) using a lateral flow test that can detect nucleobase and nucleotide sequences depending upon the stoichiometric-based binding of FnCas9 ribonucleoprotein complex (RNP)-target sequences. The assay has been optimized to be conducted within 1 h and shows 100% sensitivity and 97% specificity in clinical samples across a range of viral loads. The lateral strip results are read using the True Outcome Predicted via Strip Evaluation (TOPSE) smartphone application. This assay is versatile and can be optimized and adjusted to target various diseases.SARS-CoV-2 causes generally mild symptoms, with approximately 10-20% of cases progressing to severe disease. The pathophysiologic mechanisms by which SARS-CoV-2 causes severe disease are largely unknown. Data have indicated the involvement of different immunogenetic markers such as HLA, T, and B cells, to be associated with disease outcome. This has led to interest in these genes as potential biomarkers of SARS-CoV-2 susceptibility and for predicting prognosis and response to vaccines and other therapeutic strategies. In this chapter, we discussed outline protocols for characterizing these potential biomarkers and methods for identifying SARS-CoV-2 biomarkers using the Luminex® 100/200 technology and next-generation sequencing.Since the original SARS-CoV-2 virus emerged from Wuhan, China, in late December 2019, a number of variants have arisen with enhanced infectivity, and some may even be capable of escaping the existing vaccines. Here we describe a rapid automated nucleic acid microarray hybridization and readout in less than 15 min using the Fraunhofer lab-on-a-chip platform for identification of bacterial species and antibiotic resistance. This platform allows a fast adaptation of new biomarkers enabling identification of different genes and gene mutations, such as those seen in the case the SARS-CoV-2 variants.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is frequently diagnosed through detection of viral RNA using nucleic acid amplification testing (NAAT) assays that are usually used in centralized settings. Following the publication of the SARS-CoV-2 genetic sequence, multiple diagnostic assays were launched in 2020. These assays require evaluation beyond manufacturer self-reported performance to determine whether they are suitable for use, meet country acceptance criteria, and are compatible with existing in-country platforms. In order to meet the demand for testing services, rapid yet robust assay performance evaluations are required. In our setting, these evaluation protocols required the use of residual patient specimens and reference materials, as typical clinical trials are time-consuming and limited by cost and the cyclical nature of SARS-CoV-2 infection. This protocol is designed to assist in the rapid and robust evaluation of nucleic acid-based assays for the detection of SARS-CoV-2 using limited specimens, reference materials, and test kits. While it is specific for RNA-based assays, it can be adapted for fully automated analyses. The preparation and processing of evaluation panels is described, followed by methods for analytical precision analysis and data visualization. Assay robustness and scalability are briefly discussed as these can be critical for implementation. This protocol is designed to be flexible and alternative options are provided throughout the text where possible.Since the outbreak of coronavirus disease 2019 (COVID-19) on the Diamond Princess cruise ship docked at Yokohama Port on February 3, 2020, real-time reverse transcription-polymerase chain reaction (RT-PCR) testing using nasopharyngeal swab samples from symptomatic and asymptomatic COVID-19 individuals has been the main way to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in almost all clinical laboratories in Japan. With the diffusion of sets containing the primers and probe, the gold standard real-time RT-PCR test has permeated throughout the country. To prevent the spread of infection, real-time RT-PCR testing is important to confirm whether people are positive, asymptomatic, or negative for COVID-19. Now, in addition to pharyngeal swab, saliva and blood samples can be used to detect SARS-CoV-2 RNA. Here, we introduce a clinical laboratory test performed using the High Pure viral nucleic acid kit and subsequent real-time RT-PCR system to detect SARS-CoV-2 RNA in serum, plasma, or whole blood in a hospital in Yokohama, Japan.Detection and mutation surveillance of SARS-CoV-2 are crucial for combating the COVID-19 pandemic. Here we describe a lab-based method for multiplex isothermal amplification-based sequencing and real-time analysis of multiple viral genomes. It can simultaneously detect SARS-CoV-2, influenza A, human adenovirus, and human coronavirus and monitor mutations for up to 96 samples in real time. The method proved to be rapid and sensitive (limit of detection 29 viral RNA copies/μL of extracted nucleic acid) in detecting SARS-CoV-2 in clinical samples. We expect it to offer a promising solution for rapid field-deployable detection and mutational surveillance of pandemic viruses.Quantitative polymerase chain reaction (qPCR) is a routinely used method for detection and quantitation of gene expression in real time. This is achieved through the incorporation and measurement of fluorescent reporter probes in the amplified cDNA strands, since the fluorescent signals increase as the reaction progresses. The availability of multiple probes which fluoresce at different wavelengths allows for multiplexing as this gives rise to amplicons with unique fluorescent signatures. Here we describe a method using the Inhibitor-Tolerant RT-qPCR kit, developed by Meridian Bioscience kit which allows simultaneous real-time quantitation of the UK, South Africa, and Brazil SARS-CoV-2 variants.COVID-19 disease caused by the novel SARS-CoV-2 virus represents a new challenge for healthcare systems. The molecular confirmation of infection is crucial to guide public health decision-making. This task could be made more difficult during the next influenza season. Thus, a rapid and user-friendly diagnostic test to discriminate SARS-CoV-2 from influenza viruses is urgently needed. Here, we present a multiplex quantitative polymerase chain reaction (qPCR) assay capable of distinguishing SARS-CoV-2 from influenza A and B cases. This assay benefits from the use of an inhibitor tolerant PCR mix which obviates the need for the rate-limiting extraction step, allowing for a more rapid and accurate analysis.Multiplex assays that provide simultaneous measurement of multiple analytes in biological samples have now developed into widely used technologies in the study of diseases, drug discovery, and other medical areas. These approaches span multiple assay systems and can provide readouts of specific assay components with similar accuracy as the respective single assay measurements. Multiplexing allows the consumption of lower sample volumes, lower costs, and higher throughput compared with carrying out single assays. A number of recent studies have demonstrated the impact of multiplex assays in the study of the SARS-CoV-2 virus, the infectious agent responsible for the current COVID-19 pandemic. In this respect, machine learning techniques have proven to be highly valuable in capturing complex disease phenotypes and converting these insights into models which can be applied in real-world settings. This chapter gives an overview of opportunities and challenges of multiplexed biomarker analysis, with a focus on the use of machine learning aimed at identification of biological signatures for increasing our understanding of COVID-19 disease, and for improved diagnostics and prediction of disease outcomes.The emergence of new SARS-CoV-2 variants has led to increased transmission and more severe cases of COVID-19, with some having the ability to escape the existing vaccines. This review discusses the importance of developing new vaccine strategies to keep pace with these variants to more effectively manage the pandemic. Luzindole Many of the new vaccine approaches include multivalent display of the most highly mutated regions in the SARS-CoV-2 spike protein such that they resemble a virus particle and can stimulate an effective neutralization response. It is hoped that such approaches help to manage the existing pandemic and provide a robust infrastructure toward fast tracking responses across the world in case of future pandemics.Luzindole