C
#include <stdio.h>
int main() {
printf("Hello, World!\n");
return 0;
}
Creating Variables
In C, variables are used to store data that can be manipulated within a program. Here's a comprehensive guide on creating and working with variables in C:
Syntax for Variable Declaration and Initialization
Declaration:
type variable_name;
Example:
int number;
char letter;
float salary;
Initialization:
variable_name = value;
Example:
number = 10;
letter = 'A';
salary = 50000.0;
Declaration and Initialization Combined:
type variable_name = value;
Example:
int age = 25;
double pi = 3.14159;
char grade = 'A';
Rules for Variable Names
- Variable names must start with a letter (a-z, A-Z) or an underscore (_).
- Subsequent characters can be letters, digits (0-9), or underscores.
- Variable names are case-sensitive (
myVar
andmyvar
are different). - Variable names cannot be C reserved keywords (e.g.,
int
,return
,void
).
Examples:
int age;
char _grade;
float salary_2024;
Variable Scope
The scope of a variable is the part of the program where the variable is accessible. Variables in C can be:
Local Variables: Declared inside a function or a block and accessible only within that function or block.
void myFunction() {
int localVar = 5;
printf("%d", localVar);
}
Global Variables: Declared outside of all functions and accessible from any function within the program.
int globalVar = 10;
void myFunction() {
printf("%d", globalVar);
}
int main() {
myFunction(); // Outputs: 10
return 0;
}
Constants
Constants are variables whose values cannot be changed once assigned. They are declared using the const
keyword.
Example:
const int DAYS_IN_WEEK = 7;
const float PI = 3.14159;
Default Values
In C, uninitialized local variables contain garbage values, while global and static variables are initialized to zero by default.
Example:
#include <stdio.h>
int globalVar; // default value 0
int main() {
int localVar; // contains garbage value
printf("Global Variable: %d\n", globalVar);
printf("Local Variable: %d\n", localVar);
return 0;
}
Declare Many Variables with or without Values
You can declare multiple variables of the same type in a single line, separating them with commas. You can also initialize them either at the time of declaration or later.
Examples:
// Declaring multiple variables without values
int a, b, c;
// Declaring and initializing some variables
int x = 10, y, z = 30;
One Value to Multiple Variables
You can assign the same value to multiple variables by chaining the assignment operator.
Example:
int m, n, o;
m = n = o = 50;
Creating Comments
Comments in C are non-executable statements that are used to describe and explain the code. They are essential for making the code more readable and maintainable. C supports two types of comments:
1. Single-Line Comments
Single-line comments start with two forward slashes (//
). Everything following //
on that line is considered a comment.
Syntax:
// This is a single-line comment
int x = 10; // x is initialized to 10
2. Multi-Line Comments
Multi-line comments start with /*
and end with */
. Everything between /*
and */
is considered a comment, regardless of how many lines it spans.
Syntax:
/*
This is a multi-line comment.
It can span multiple lines.
*/
int y = 20; /* y is initialized to 20 */
Example Usage
Single-Line Comment Example:
#include <stdio.h>
int main() {
// Print Hello, World!
printf("Hello, World!\n"); // This prints the string to the console
return 0;
}
Multi-Line Comment Example:
#include <stdio.h>
int main() {
/*
This is a simple C program
that prints Hello, World!
to the console.
*/
printf("Hello, World!\n");
return 0;
}
These examples illustrate how to use single-line and multi-line comments in C to make the code more readable and maintainable.
Basic Input and Output in C
In C, input and output operations are performed using standard library functions. The most commonly used functions for basic input and output are printf
and scanf
.
1. Output using printf
The printf
function is used to print text and variables to the console.
Syntax:
printf("format string", variable1, variable2, ...);
Format Specifiers:
-
%d
or%i
- for integers -
%f
- for floating-point numbers -
%lf
- for double-precision floating-point numbers -
%c
- for characters -
%s
- for strings
Example:
#include <stdio.h>
int main() {
int age = 25;
float salary = 50000.0;
double pi = 3.141592653589793;
char grade = 'A';
char name[] = "John";
printf("Age: %d\n", age);
printf("Salary: %.2f\n", salary);
printf("Pi: %.15lf\n", pi);
printf("Grade: %c\n", grade);
printf("Name: %s\n", name);
return 0;
}
2. Input using scanf
The scanf
function is used to read formatted input from the console.
Syntax:
scanf("format string", &variable1, &variable2, ...);
Example:
#include <stdio.h>
int main() {
int age;
float salary;
double pi;
char grade;
char name[50];
printf("Enter age: ");
scanf("%d", &age);
printf("Enter salary: ");
scanf("%f", &salary);
printf("Enter pi value: ");
scanf("%lf", &pi);
printf("Enter grade: ");
scanf(" %c", &grade); // Note the space before %c to consume any leftover newline character
printf("Enter name: ");
scanf("%s", name); // Reads a single word, stops at whitespace
printf("\nYou entered:\n");
printf("Age: %d\n", age);
printf("Salary: %.2f\n", salary);
printf("Pi: %.15lf\n", pi);
printf("Grade: %c\n", grade);
printf("Name: %s\n", name);
return 0;
}
Important Points
- The
&
operator is used inscanf
to pass the address of the variable where the input will be stored. - When reading characters with
scanf
, it's important to handle the newline character left in the input buffer. -
scanf
reads strings up to the first whitespace character. For reading a line of text, functions likefgets
can be used.
Reading a Line of Text with fgets
:
Syntax:
fgets(buffer, size, stdin);
Example:
#include <stdio.h>
int main() {
char name[50];
printf("Enter your full name: ");
fgets(name, sizeof(name), stdin); // Reads a line of text including spaces
printf("Your name is: %s", name);
return 0;
}
Using getchar
and putchar
for Character Input and Output
getchar
Example:
#include <stdio.h>
int main() {
char ch;
printf("Enter a character: ");
ch = getchar();
printf("You entered: ");
putchar(ch);
printf("\n");
return 0;
}
putchar
Example:
#include <stdio.h>
int main() {
char ch = 'A';
printf("The character is: ");
putchar(ch);
printf("\n");
return 0;
}
Data Types in C
In C programming, data types specify the type of data that variables can store. C supports several basic and derived data types, each with specific properties. Here's a comprehensive guide to data types in C:
1. Primitive Data Types
Integer Types
-
int
: Standard integer type, typically 4 bytes.
Example:
int numInt = 100000;
-
short
: Short integer type, typically 2 bytes.
Example:
short numShort = 1000;
-
long
: Long integer type, varies by system (commonly 4 or 8 bytes).
Example:
long numLong = 10000000000L;
-
long long
: Long long integer type, typically 8 bytes (C99 and later).
Example:
long long bigNumber = 123456789012345LL;
Floating-Point Types
-
float
: Single-precision floating-point, typically 4 bytes.
Example:
float numFloat = 3.14f;
-
double
: Double-precision floating-point, typically 8 bytes.
Example:
double numDouble = 3.14159;
-
long double
: Extended precision floating-point, varies by system.
Example:
long double extendedPi = 3.14159265358979323846L;
Character Type
-
char
: Character type, typically 1 byte. Stores ASCII values (0 to 127) or UTF-8 characters.
Example:
char letter = 'A';
Boolean Type
-
_Bool
orbool
: Represents true or false values (0 or 1).- To use boolean type, include
<stdbool.h>
header file.
- To use boolean type, include
Example:
#include <stdbool.h>
bool isValid = true;
2. Derived Data Types
Array
-
Syntax:
type array_name[size];
Example:
int numbers[5] = {1, 2, 3, 4, 5};
Pointer
-
Syntax:
type *pointer_name;
Example:
int *ptr;
Structure
- Syntax:
struct structure_name {
type member1;
type member2;
// ...
};
Example:
struct Person {
char name[50];
int age;
float salary;
};
Booleans in C
In C, booleans are typically represented using integer types, where 0
represents false and any non-zero value represents true. Let's explore how booleans are handled in C programming:
1. Boolean Representation
In C, there is no dedicated boolean type like in some other languages. Instead, integers (int
) are commonly used to represent boolean values.
-
_Bool
Type: Defined in C standard as a data type capable of holding only0
(false) or1
(true).
Example:
#include <stdio.h>
int main() {
_Bool b1 = 1; // true
_Bool b2 = 0; // false
printf("b1: %d\n", b1); // Output: 1 (true)
printf("b2: %d\n", b2); // Output: 0 (false)
return 0;
}
-
Using
stdbool.h
: Introduced in C99,stdbool.h
provides a clearer representation withbool
,true
, andfalse
.
Example:
#include <stdio.h>
#include <stdbool.h>
int main() {
bool isValid = true;
bool isReady = false;
printf("isValid: %d\n", isValid); // Output: 1 (true)
printf("isReady: %d\n", isReady); // Output: 0 (false)
return 0;
}
2. Boolean Evaluation
In C, expressions are evaluated to true (1
) or false (0
). Here are some examples of expressions and their boolean evaluations:
- Integer and Float Values: Any non-zero integer or non-zero floating-point value is evaluated as true. Zero (0) and zero as float (0.0) are evaluated as false.
Example:
#include <stdio.h>
int main() {
int num = 10;
float salary = 0.0;
if (num) {
printf("num is true\n");
} else {
printf("num is false\n");
}
if (salary) {
printf("salary is true\n");
} else {
printf("salary is false\n");
}
return 0;
}
Output:
num is true
salary is false
3. Null Pointer Evaluation
In C, a null pointer is evaluated as false in boolean context. A null pointer is typically represented as (type *)0
.
Example:
#include <stdio.h>
int main() {
int *ptr = NULL;
if (ptr) {
printf("ptr is not NULL\n");
} else {
printf("ptr is NULL\n");
}
return 0;
}
Output:
ptr is NULL
Type Casting: Implicit and Explicit
In C programming, type casting refers to converting a value from one data type to another. There are two types of type casting: implicit and explicit. Let's explore each in detail:
1. Implicit Type Casting (Automatic Type Conversion)
Implicit type casting occurs automatically by the compiler when compatible types are mixed in expressions. It promotes smaller data types to larger data types to avoid loss of data. It's also known as automatic type conversion.
Example:
#include <stdio.h>
int main() {
int numInt = 10;
double numDouble = 3.5;
double result = numInt + numDouble; // Implicitly converts numInt to double
printf("Result: %.2lf\n", result); // Output: 13.50
return 0;
}
In this example, numInt
(an integer) is implicitly converted to a double
before performing the addition with numDouble
.
2. Explicit Type Casting (Type Conversion)
Explicit type casting is performed by the programmer using casting operators to convert a value from one data type to another. It allows for precise control over the type conversion process but can lead to data loss if not used carefully.
Syntax:
(type) expression
Example:
#include <stdio.h>
int main() {
double numDouble = 3.5;
int numInt;
numInt = (int)numDouble; // Explicitly casts numDouble to int
printf("numInt: %d\n", numInt); // Output: 3
return 0;
}
In this example, numDouble
(a double) is explicitly cast to an int
. The decimal part is truncated, resulting in numInt
being 3
.
Arrays in C
Arrays in C are collections of variables of the same type that are accessed by indexing. They provide a way to store multiple elements under a single name.
1. Declaring Arrays
To declare an array in C, specify the type of elements it will hold and the number of elements enclosed in square brackets []
.
Syntax:
type arrayName[arraySize];
-
type
: Data type of the array elements. -
arrayName
: Name of the array. -
arraySize
: Number of elements in the array.
Example:
int numbers[5]; // Array of 5 integers
2. Initializing Arrays
Arrays can be initialized either during declaration or after declaration using assignment statements.
Example:
int numbers[5] = {1, 2, 3, 4, 5}; // Initializing during declaration
// Initializing after declaration
int moreNumbers[3];
moreNumbers[0] = 10;
moreNumbers[1] = 20;
moreNumbers[2] = 30;
3. Accessing Array Elements
Array elements are accessed using zero-based indexing, where the first element is at index 0
.
Example:
int numbers[5] = {1, 2, 3, 4, 5};
printf("First element: %d\n", numbers[0]); // Output: 1
printf("Second element: %d\n", numbers[1]); // Output: 2
4. Modifying Array Elements
Array elements can be modified by assigning new values to specific indices.
Example:
int numbers[5] = {1, 2, 3, 4, 5};
numbers[2] = 10; // Modify the third element
printf("Modified third element: %d\n", numbers[2]); // Output: 10
5. Multidimensional Arrays
C supports multidimensional arrays, which are arrays of arrays. They are useful for storing tabular data or matrices.
Example:
int matrix[3][3] = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9}
};
printf("Element at row 2, column 3: %d\n", matrix[1][2]); // Output: 6
6. Passing Arrays to Functions
When passing arrays to functions, C passes them by reference. This means any modifications made to the array within the function affect the original array.
Example:
#include <stdio.h>
void printArray(int arr[], int size) {
for (int i = 0; i < size; i++) {
printf("%d ", arr[i]);
}
printf("\n");
}
int main() {
int numbers[5] = {1, 2, 3, 4, 5};
printArray(numbers, 5); // Pass array and its size to function
return 0;
}
Strings in C
In C programming, strings are arrays of characters terminated by a null ('\0') character. Let's explore how to work with strings, including input, output, and manipulation:
1. Declaring and Initializing Strings
Strings in C are arrays of characters. They can be declared and initialized in several ways:
Syntax:
char strName[size];
Example:
#include <stdio.h>
int main() {
// Declaring and initializing a string
char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};
// Alternatively, using string literal (implicitly adds '\0')
char message[] = "Welcome";
printf("Greeting: %s\n", greeting); // Output: Hello
printf("Message: %s\n", message); // Output: Welcome
return 0;
}
2. String Input with scanf()
To input a string with spaces in C, fgets()
from <stdio.h>
is often used instead of scanf()
because scanf()
stops reading at the first space. Here’s how to use fgets()
:
Example:
#include <stdio.h>
int main() {
char name[50];
printf("Enter your name: ");
fgets(name, sizeof(name), stdin); // Read input including spaces
printf("Hello, %s!\n", name);
return 0;
}
3. String Functions
C provides several library functions for manipulating strings, declared in <string.h>
.
-
strlen()
: Calculates the length of a string.
Example:
#include <stdio.h>
#include <string.h>
int main() {
char str[] = "Hello";
int len = strlen(str);
printf("Length of '%s' is %d\n", str, len); // Output: Length of 'Hello' is 5
return 0;
}
-
strcpy()
: Copies one string to another.
Example:
#include <stdio.h>
#include <string.h>
int main() {
char src[] = "Hello";
char dest[20];
strcpy(dest, src);
printf("Copied string: %s\n", dest); // Output: Copied string: Hello
return 0;
}
-
strcat()
: Concatenates two strings.
Example:
#include <stdio.h>
#include <string.h>
int main() {
char str1[20] = "Hello";
char str2[] = " World";
strcat(str1, str2);
printf("Concatenated string: %s\n", str1); // Output: Concatenated string: Hello World
return 0;
}
-
strcmp()
: Compares two strings.
Example:
#include <stdio.h>
#include <string.h>
int main() {
char str1[] = "Hello";
char str2[] = "Hello";
if (strcmp(str1, str2) == 0) {
printf("Strings are equal\n");
} else {
printf("Strings are not equal\n");
}
return 0;
}
4. Handling String Input Safely
When using fgets()
for string input, ensure buffer overflow doesn't occur by specifying the maximum length of input to read.
Example:
#include <stdio.h>
int main() {
char sentence[100];
printf("Enter a sentence: ");
fgets(sentence, sizeof(sentence), stdin); // Read up to 99 characters plus '\0'
printf("You entered: %s\n", sentence);
return 0;
}
5. Null-Terminated Strings
C strings are null-terminated, meaning they end with a null character '\0'
. This character indicates the end of the string and is automatically added when using string literals.
Example:
#include <stdio.h>
int main() {
char message[] = "Hello"; // Automatically includes '\0'
// Printing characters until '\0' is encountered
for (int i = 0; message[i] != '\0'; ++i) {
printf("%c ", message[i]);
}
printf("\n");
return 0;
}
Operators in C
Operators in C are symbols used to perform operations on variables and values. They are categorized into several types based on their functionality.
Arithmetic Operators
Arithmetic operators are used for basic mathematical operations.
Operator | Name | Description | Example |
---|---|---|---|
+ |
Addition | Adds two operands | x + y |
- |
Subtraction | Subtracts the right operand from the left | x - y |
* |
Multiplication | Multiplies two operands | x * y |
/ |
Division | Divides the left operand by the right operand | x / y |
% |
Modulus | Returns the remainder of the division | x % y |
++ |
Increment | Increases the value of operand by 1 |
x++ or ++x
|
-- |
Decrement | Decreases the value of operand by 1 |
x-- or --x
|
#include <stdio.h>
int main() {
int a = 10, b = 3;
printf("a + b = %d\n", a + b); // Output: 13
printf("a / b = %d\n", a / b); // Output: 3
printf("a %% b = %d\n", a % b); // Output: 1 (Modulus operation)
int x = 5;
x++;
printf("x++ = %d\n", x); // Output: 6
int y = 8;
y--;
printf("y-- = %d\n", y); // Output: 7
return 0;
}
Assignment Operators
Assignment operators are used to assign values to variables and perform operations.
Operator | Name | Description | Example |
---|---|---|---|
= |
Assignment | Assigns the value on the right to the variable on the left | x = 5 |
+= |
Addition | Adds right operand to the left operand and assigns the result to the left | x += 3 |
-= |
Subtraction | Subtracts right operand from the left operand and assigns the result to the left | x -= 3 |
*= |
Multiplication | Multiplies right operand with the left operand and assigns the result to the left | x *= 3 |
/= |
Division | Divides left operand by right operand and assigns the result to the left | x /= 3 |
%= |
Modulus | Computes modulus of left operand with right operand and assigns the result to the left | x %= 3 |
#include <stdio.h>
int main() {
int x = 10;
x += 5;
printf("x += 5: %d\n", x); // Output: 15
return 0;
}
Comparison Operators
Comparison operators are used to compare values.
Operator | Name | Description | Example |
---|---|---|---|
== |
Equal | Checks if two operands are equal | x == y |
!= |
Not Equal | Checks if two operands are not equal | x != y |
> |
Greater Than | Checks if left operand is greater than right | x > y |
< |
Less Than | Checks if left operand is less than right | x < y |
>= |
Greater Than or Equal | Checks if left operand is greater than or equal to right | x >= y |
<= |
Less Than or Equal | Checks if left operand is less than or equal to right | x <= y |
#include <stdio.h>
int main() {
int a = 5, b = 10;
printf("a == b: %d\n", a == b); // Output: 0 (false)
printf("a < b: %d\n", a < b); // Output: 1 (true)
return 0;
}
Logical Operators
Logical operators combine Boolean expressions.
Operator | Description | Example |
---|---|---|
&& |
Logical AND | x < 5 && x < 10 |
|| |
Logical OR | x < 5 || x < 4 |
! |
Logical NOT | !(x < 5 && x < 10) |
#include <stdio.h>
int main() {
int x = 3;
printf("x < 5 && x < 10: %d\n", x < 5 && x < 10); // Output: 1 (true)
printf("x < 5 || x < 2: %d\n", x < 5 || x < 2); // Output: 1 (true)
return 0;
}
Bitwise Operators
Bitwise operators perform operations on bits of integers.
Operator | Name | Description | Example |
---|---|---|---|
& |
AND | Sets each bit to 1 if both bits are 1 | x & y |
| |
OR | Sets each bit to 1 if one of two bits is 1 | x | y |
^ |
XOR | Sets each bit to 1 if only one of two bits is 1 | x ^ y |
~ |
NOT | Inverts all the bits | ~x |
<< |
Left Shift | Shifts bits to the left | x << 2 |
>> |
Right Shift | Shifts bits to the right | x >> 2 |
#include <stdio.h>
int main() {
int x = 5, y = 3;
printf("x & y: %d\n", x & y); // Output: 1
printf("x | y: %d\n", x | y); // Output: 7
return 0;
}
Ternary Operator
The ternary operator ? :
provides a shorthand for conditional expressions.
#include <stdio.h>
int main() {
int age = 20;
char* status = (age >= 18) ? "Adult" : "Minor";
printf("Status: %s\n", status); // Output: Adult
return 0;
}
sizeof
Operator
The sizeof
operator in C is used to determine the size of a variable or data type in bytes.
#include <stdio.h>
int main() {
int size_of_int = sizeof(int);
printf("Size of int: %zu bytes\n", size_of_int); // Output: Size of int: 4 bytes
return 0;
}
&
Address-of Operator
The &
operator in C returns the memory address of a variable.
#include <stdio.h>
int main() {
int x = 10;
int *ptr = &x; // ptr now holds the address of x
printf("Address of x: %p\n", (void *)ptr); // Output: Address of x: 0x7ffee24a7a98
return 0;
}
*
Dereference Operator
The *
operator in C is used to access the value stored at the address pointed to by a pointer.
#include <stdio.h>
int main() {
int y = 10;
int *ptr = &y; // ptr now holds the address of y
int value = *ptr; // Dereferencing ptr to get the value stored at ptr (which is y)
printf("Value of y: %d\n", value); // Output: Value of y: 10
return 0;
}
->
Arrow Operator
The ->
operator in C is used to access members of a structure or union through a pointer.
#include <stdio.h>
struct Person {
char name[20];
int age;
};
int main() {
struct Person person = {"John", 25};
struct Person *ptrPerson = &person; // ptrPerson now points to the person structure
printf("Name: %s\n", ptrPerson->name); // Accessing name using arrow operator
printf("Age: %d\n", ptrPerson->age); // Accessing age using arrow operator
return 0;
}
If-Else Statements in C
The if-else
statement in C is used for decision-making, allowing different blocks of code to be executed based on whether a specified condition evaluates to true or false.
Syntax
if (condition) {
// Block of code to be executed if the condition is true
} else {
// Block of code to be executed if the condition is false
}
if
: Theif
keyword is followed by parentheses()
containing the condition to be evaluated. If the condition is true, the code inside the curly braces{}
followingif
is executed.else
: Theelse
keyword is optional. If theif
condition evaluates to false, the code inside the curly braces{}
followingelse
is executed.
Example
#include <stdio.h>
int main() {
int num = 10;
if (num > 0) {
printf("%d is positive.\n", num);
} else {
printf("%d is not positive.\n", num);
}
return 0;
}
Output:
10 is positive.
Multiple if-else
Statements
You can use multiple if-else
statements to check multiple conditions sequentially.
#include <stdio.h>
int main() {
int num = 0;
if (num > 0) {
printf("%d is positive.\n", num);
} else if (num < 0) {
printf("%d is negative.\n", num);
} else {
printf("%d is zero.\n", num);
}
return 0;
}
Output:
0 is zero.
Nested if-else
Statements
You can nest if-else
statements within each other to create more complex decision structures.
#include <stdio.h>
int main() {
int num = 10;
if (num > 0) {
if (num % 2 == 0) {
printf("%d is positive and even.\n", num);
} else {
printf("%d is positive and odd.\n", num);
}
} else if (num < 0) {
printf("%d is negative.\n", num);
} else {
printf("%d is zero.\n", num);
}
return 0;
}
Output:
10 is positive and even.
if
Statement Without else
The else
part of the if-else
statement is optional. If omitted, the code block associated with if
is executed only if the condition is true.
#include <stdio.h>
int main() {
int num = 0;
if (num > 0) {
printf("%d is positive.\n", num);
}
return 0;
}
Note:
In C, numbers (int
and float
types) are evaluated in a boolean context where any non-zero value is considered true, and 0
(zero) is considered false. For example, if (num)
evaluates num
as true if it's non-zero, and if (f)
evaluates f
as true if it's non-zero.
Loops in C
Loops in C are used to execute a block of code repeatedly based on a condition. C supports three types of loops:
while
Loopfor
Loopdo-while
Loop
1. while
Loop
The while
loop repeatedly executes a target statement as long as a given condition is true.
Syntax:
while (condition) {
// statement(s) to be executed as long as the condition is true
}
Example:
#include <stdio.h>
int main() {
int count = 1;
while (count <= 5) {
printf("Count: %d\n", count);
count++;
}
return 0;
}
Output:
Count: 1
Count: 2
Count: 3
Count: 4
Count: 5
2. for
Loop
The for
loop is used when the number of iterations is known beforehand.
Syntax:
for (initialization; condition; increment/decrement) {
// statement(s) to be executed repeatedly until the condition becomes false
}
Example:
#include <stdio.h>
int main() {
for (int i = 1; i <= 5; i++) {
printf("Iteration: %d\n", i);
}
return 0;
}
Output:
Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4
Iteration: 5
3. do-while
Loop
The do-while
loop is similar to the while
loop, except that it executes the block of code at least once, and then repeats the loop as long as a specified condition is true.
Syntax:
do {
// statement(s) to be executed at least once
} while (condition);
Example:
#include <stdio.h>
int main() {
int num = 1;
do {
printf("Number: %d\n", num);
num++;
} while (num <= 5);
return 0;
}
Output:
Number: 1
Number: 2
Number: 3
Number: 4
Number: 5
Control Statements in Loops
break
Statement: Terminates the loop immediately, and control passes to the next statement following the loop.continue
Statement: Skips the current iteration and proceeds to the next iteration of the loop.
Example of break
:
#include <stdio.h>
int main() {
for (int i = 1; i <= 5; i++) {
if (i == 3) {
break; // Exit the loop when i is 3
}
printf("Iteration: %d\n", i);
}
return 0;
}
Output:
Iteration: 1
Iteration: 2
Example of continue
:
#include <stdio.h>
int main() {
for (int i = 1; i <= 5; i++) {
if (i == 3) {
continue; // Skip iteration when i is 3
}
printf("Iteration: %d\n", i);
}
return 0;
}
Output:
Iteration: 1
Iteration: 2
Iteration: 4
Iteration: 5
Pointers in C
Pointers are variables that store memory addresses of other variables. They allow efficient manipulation of data and dynamic memory allocation in C.
1. Declaring and Initializing Pointers
A pointer declaration follows this syntax:
type *ptr;
-
type
: Data type of the variable the pointer points to. -
*
: Indicates thatptr
is a pointer.
Example:
int *ptr; // Pointer to an integer
2. Initializing Pointers
Pointers can be initialized to point to a specific variable or memory location using the address-of operator &
.
Example:
int num = 10;
int *ptr = # // ptr now holds the address of num
3. Accessing Value at a Pointer
To access the value stored at the memory address pointed to by a pointer, use the dereference operator *
.
Example:
int num = 10;
int *ptr = #
printf("Value at ptr: %d\n", *ptr); // Output: 10
4. Pointer Arithmetic
Pointers in C support arithmetic operations, which can be useful for navigating through arrays or dynamically allocated memory.
- Increment/Decrement: Moves the pointer to the next or previous memory location of the same data type.
Example:
int arr[3] = {10, 20, 30};
int *ptr = arr; // Points to the first element of arr
ptr++; // Moves ptr to the next element
printf("Second element: %d\n", *ptr); // Output: 20
5. Pointers and Arrays
In C, arrays are closely related to pointers. An array name can be used as a pointer to its first element.
Example:
int arr[3] = {10, 20, 30};
int *ptr = arr; // Points to the first element of arr
printf("First element: %d\n", *ptr); // Output: 10
ptr++; // Move to the next element
printf("Second element: %d\n", *ptr); // Output: 20
6. Pointers and Functions
Pointers are often used in function arguments to pass variables by reference, allowing functions to modify the original variables.
Example:
#include <stdio.h>
void square(int *ptr) {
*ptr = (*ptr) * (*ptr); // Squares the value pointed by ptr
}
int main() {
int num = 5;
square(&num); // Pass num's address to square function
printf("Squared value: %d\n", num); // Output: 25
return 0;
}
7. Null Pointers
A null pointer is a pointer that does not point to any memory location. It's commonly used to indicate that the pointer isn't currently pointing to valid data.
Example:
int *ptr = NULL; // ptr is a null pointer
8. Void Pointers
Void pointers (void *
) are pointers that can point to any data type, but they cannot be directly dereferenced because their type is unspecified.
Example:
#include <stdio.h>
int main() {
int num = 10;
float f = 3.14;
char ch = 'A';
void *ptr;
ptr = #
printf("Value at ptr pointing to int: %d\n", *(int *)ptr);
ptr = &f;
printf("Value at ptr pointing to float: %.2f\n", *(float *)ptr);
ptr = &ch;
printf("Value at ptr pointing to char: %c\n", *(char *)ptr);
return 0;
}
Output:
Value at ptr pointing to int: 10
Value at ptr pointing to float: 3.14
Value at ptr pointing to char: A
Arrays as Pointers in C
In C, arrays and pointers are closely related concepts. Understanding how arrays decay into pointers and how pointers can be used to manipulate arrays is crucial for effective C programming.
1. Arrays and Pointers Relationship
Arrays in C can decay into pointers. When you use the array name in an expression, it often decays into a pointer to its first element.
Example:
int arr[5] = {1, 2, 3, 4, 5};
int *ptr = arr; // arr decays into a pointer to its first element
Here, ptr
points to the first element of the array arr
.
2. Accessing Array Elements via Pointers
You can access array elements using pointer arithmetic. This is often more flexible than using array indexing because pointers can be incremented or decremented to traverse through the array.
Example:
int arr[5] = {1, 2, 3, 4, 5};
int *ptr = arr; // Points to the first element of arr
printf("First element: %d\n", *ptr); // Output: 1
printf("Second element: %d\n", *(ptr + 1)); // Output: 2
3. Pointer Arithmetic with Arrays
Pointer arithmetic allows you to navigate through an array using pointer operations like addition (+
), subtraction (-
), and dereferencing (*
).
Example:
int arr[5] = {1, 2, 3, 4, 5};
int *ptr = arr; // Points to the first element of arr
for (int i = 0; i < 5; i++) {
printf("Element at index %d: %d\n", i, *(ptr + i));
}
4. Modifying Array Elements via Pointers
You can modify array elements using pointers just like with array indexing.
Example:
int arr[5] = {1, 2, 3, 4, 5};
int *ptr = arr; // Points to the first element of arr
*(ptr + 2) = 10; // Modify the third element of arr
printf("Modified third element: %d\n", arr[2]); // Output: 10
5. Passing Arrays to Functions using Pointers
Arrays are commonly passed to functions in C using pointers. This allows functions to modify array elements directly.
Example:
#include <stdio.h>
void printArray(int *arr, int size) {
for (int i = 0; i < size; i++) {
printf("%d ", arr[i]);
}
printf("\n");
}
int main() {
int arr[5] = {1, 2, 3, 4, 5};
printArray(arr, 5); // Pass array and its size to function using pointer
return 0;
}
Pointers as Arrays in C
In C, pointers and arrays can often be used interchangeably due to their close relationship. Pointers can simulate array behavior, allowing direct access to memory locations.
1. Initializing Pointers to Arrays
Pointers can be initialized to point to the first element of an array. This allows for accessing array elements using pointer notation.
Example:
int arr[5] = {1, 2, 3, 4, 5};
int *ptr = arr; // ptr points to the first element of arr
2. Accessing Array Elements using Pointers
Once initialized, pointers can be used to access array elements just like array indexing.
Example:
int arr[5] = {1, 2, 3, 4, 5};
int *ptr = arr; // ptr points to the first element of arr
printf("First element: %d\n", ptr[0]); // Output: 1
printf("Second element: %d\n", ptr[1]); // Output: 2
3. Pointer Arithmetic with Arrays
Pointers support arithmetic operations that can simulate array indexing. This is useful for iterating through arrays or accessing elements.
Example:
int arr[5] = {1, 2, 3, 4, 5};
int *ptr = arr; // ptr points to the first element of arr
for (int i = 0; i < 5; i++) {
printf("Element at index %d: %d\n", i, ptr[i]);
}
4. Modifying Array Elements via Pointers
Arrays can be modified using pointers just like with array indexing.
Example:
int arr[5] = {1, 2, 3, 4, 5};
int *ptr = arr; // ptr points to the first element of arr
ptr[2] = 10; // Modify the third element of arr
printf("Modified third element: %d\n", arr[2]); // Output: 10
Functions in C
Functions in C are blocks of code that perform a specific task. They provide modularity and reusability in programs by allowing code to be organized into manageable units.
1. Function Declaration and Definition
Syntax:
return_type function_name(parameter1, parameter2, parameter3, ...) {
// Function body
// Statements
return expression; // Optional return statement
}
-
return_type: Specifies the type of value returned by the function (
void
if no return value). - function_name: Name of the function.
- parameter_list: List of parameters (inputs) the function accepts.
- return: Optional statement to return a value to the calling code.
Example:
#include <stdio.h>
// Function declaration
int add(int a, int b);
int main() {
int result;
// Function call
result = add(10, 20);
printf("Sum: %d\n", result);
return 0;
}
// Function definition
int add(int a, int b) {
return a + b; // Return sum of a and b
}
2. Function Prototypes
Function prototypes declare the function signature (return type, name, and parameters) before its actual definition. This allows the compiler to verify function calls and enforce type checking.
Example:
#include <stdio.h>
// Function prototype
int add(int, int);
int main() {
int result;
result = add(10, 20); // Function call
printf("Sum: %d\n", result);
return 0;
}
// Function definition
int add(int a, int b) {
return a + b; // Return sum of a and b
}
3. Function Parameters
Functions can accept parameters (inputs) that are passed during function calls. Parameters allow functions to operate on different data each time they are called.
Example:
#include <stdio.h>
// Function declaration with parameters
void greet(char name[]);
int main() {
char userName[] = "John";
greet(userName); // Pass userName to function
return 0;
}
// Function definition
void greet(char name[]) {
printf("Hello, %s!\n", name);
}
4. Return Statement
Functions can return a value using the return
statement. The return type specifies the data type of the value returned by the function. If no return value is needed, the return type is void
.
Example:
#include <stdio.h>
// Function declaration with return type int
int square(int num);
int main() {
int result = square(5); // Function call
printf("Square: %d\n", result);
return 0;
}
// Function definition
int square(int num) {
return num * num; // Return the square of num
}
5. Void Functions
Functions with void
return type do not return any value. They are used for tasks that do not require a return value, such as printing output or performing operations without returning a result.
Example:
#include <stdio.h>
// Function declaration with void return type
void displayMessage();
int main() {
displayMessage(); // Function call
return 0;
}
// Function definition
void displayMessage() {
printf("Welcome to C Programming!\n");
}
6. Recursive Functions
Recursive functions are functions that call themselves either directly or indirectly. They are useful for solving problems that can be broken down into smaller, similar sub-problems.
Example (Factorial):
#include <stdio.h>
// Function declaration for factorial calculation
int factorial(int n);
int main() {
int num = 5;
printf("Factorial of %d = %d\n", num, factorial(num));
return 0;
}
// Function definition for factorial calculation
int factorial(int n) {
if (n == 0 || n == 1)
return 1;
else
return n * factorial(n - 1); // Recursive call
}
7. Function Pointers
Function pointers hold the address of functions. They allow functions to be passed as arguments to other functions or stored in data structures, enabling dynamic function calls.
Example:
#include <stdio.h>
// Function declaration
int add(int a, int b);
int main() {
int (*ptr)(int, int); // Declare function pointer
ptr = add; // Assign address of add function to ptr
int result = ptr(10, 20); // Call add using function pointer
printf("Sum: %d\n", result);
return 0;
}
// Function definition
int add(int a, int b) {
return a + b; // Return sum of a and b
}
8. Variable Number of Arguments
Functions in C can accept a variable number of arguments using ellipses (...
). This feature is commonly used in functions like printf()
and scanf()
.
Example:
#include <stdio.h>
#include <stdarg.h>
// Function declaration with variable arguments
double average(int num, ...);
int main() {
double avg1 = average(3, 10, 20, 30);
double avg2 = average(5, 1, 2, 3, 4, 5);
printf("Average 1: %.2f\n", avg1);
printf("Average 2: %.2f\n", avg2);
return 0;
}
// Function definition with variable arguments
double average(int num, ...) {
va_list args;
double sum = 0.0;
va_start(args, num); // Initialize args to retrieve additional arguments
for (int i = 0; i < num; i++) {
sum += va_arg(args, int); // Retrieve each argument
}
va_end(args); // Clean up variable argument list
return sum / num; // Calculate average
}
9. Passing Function as Argument
In C, functions can be passed as arguments to other functions. This feature allows for flexibility and enables functions to operate on different behaviors based on the function passed.
Example:
#include <stdio.h>
// Function that takes another function as argument
void performOperation(int (*operation)(int, int), int a, int b) {
int result = operation(a, b);
printf("Result: %d\n", result);
}
// Functions to be used as arguments
int add(int a, int b) {
return a + b;
}
int subtract(int a, int b) {
return a - b;
}
int main() {
// Pass function 'add' as argument
performOperation(add, 10, 5);
// Pass function 'subtract' as argument
performOperation(subtract, 10, 5);
return 0;
}
Structs in C
In C programming, a struct (structure) is a user-defined data type that allows you to group together data items of different types under a single name. It enables you to create complex data structures to organize and manipulate related pieces of data efficiently.
1. Declaring a Struct
Syntax:
struct struct_name {
// Member variables (fields)
data_type member1;
data_type member2;
// ... more members
};
- struct_name: Name of the struct.
- data_type: Data type of each member variable.
Example:
#include <stdio.h>
// Declare a struct
struct Person {
char name[50];
int age;
float height;
};
int main() {
// Declare struct variables
struct Person person1;
struct Person person2;
// Accessing and modifying struct members
strcpy(person1.name, "John");
person1.age = 30;
person1.height = 5.8;
// Displaying struct members
printf("Person 1: Name=%s, Age=%d, Height=%.2f\n", person1.name, person1.age, person1.height);
return 0;
}
2. Accessing Struct Members
Struct members are accessed using the dot (.
) operator.
Example:
#include <stdio.h>
struct Point {
int x;
int y;
};
int main() {
struct Point p1 = {10, 20};
// Accessing struct members
printf("Coordinates: x=%d, y=%d\n", p1.x, p1.y);
return 0;
}
3. Initializing Structs
Structs can be initialized at the time of declaration or later using assignment.
Example:
#include <stdio.h>
struct Rectangle {
int length;
int width;
};
int main() {
// Initializing struct at declaration
struct Rectangle rect1 = {10, 5};
// Initializing struct later
struct Rectangle rect2;
rect2.length = 15;
rect2.width = 8;
// Accessing and displaying struct members
printf("Rectangle 1: Length=%d, Width=%d\n", rect1.length, rect1.width);
printf("Rectangle 2: Length=%d, Width=%d\n", rect2.length, rect2.width);
return 0;
}
4. Nested Structs
Structs can contain other structs as members, enabling the creation of hierarchical data structures.
Example:
#include <stdio.h>
struct Date {
int day;
int month;
int year;
};
struct Employee {
char name[50];
struct Date birthDate;
float salary;
};
int main() {
struct Employee emp1 = {"Alice", {15, 7, 1990}, 50000.0};
// Accessing nested struct members
printf("Employee: Name=%s, Birth Date=%d/%d/%d, Salary=%.2f\n",
emp1.name, emp1.birthDate.day, emp1.birthDate.month, emp1.birthDate.year, emp1.salary);
return 0;
}
5. Typedef for Structs
typedef
can be used to create an alias (or shorthand) for structs.
Example:
#include <stdio.h>
typedef struct {
int hours;
int minutes;
int seconds;
} Time;
int main() {
Time t1 = {10, 30, 45};
// Accessing typedef struct members
printf("Time: %d:%d:%d\n", t1.hours, t1.minutes, t1.seconds);
return 0;
}
6. Passing Structs to Functions
Structs can be passed to functions either by value or by reference (using pointers).
Example:
#include <stdio.h>
struct Student {
char name[50];
int rollNumber;
};
void displayStudent(struct Student s) {
printf("Student: Name=%s, Roll Number=%d\n", s.name, s.rollNumber);
}
int main() {
struct Student stu1 = {"Emma", 101};
// Passing struct to function by value
displayStudent(stu1);
return 0;
}
7. Pointer to Struct
You can create pointers to structs and access struct members using arrow (->
) operator.
Example:
#include <stdio.h>
struct Book {
char title[100];
char author[50];
float price;
};
int main() {
struct Book book1 = {"C Programming", "Dennis Ritchie", 39.95};
struct Book *ptrBook;
// Pointer to struct
ptrBook = &book1;
// Accessing struct members using pointer
printf("Book: Title=%s, Author=%s, Price=%.2f\n",
ptrBook->title, ptrBook->author, ptrBook->price);
return 0;
}
8. Size of Struct
The sizeof
operator can be used to determine the size of a struct in bytes.
Example:
#include <stdio.h>
struct Car {
char model[50];
int year;
float price;
};
int main() {
struct Car car1;
printf("Size of struct Car: %lu bytes\n", sizeof(car1));
return 0;
}
9. Dynamic Memory Allocation for Structs
You can allocate memory for structs dynamically using malloc
, calloc
, or realloc
functions.
Example:
#include <stdio.h>
#include <stdlib.h>
struct Point {
int x;
int y;
};
int main() {
struct Point *ptrPoint;
// Allocate memory dynamically for struct Point
ptrPoint = (struct Point *)malloc(sizeof(struct Point));
if (ptrPoint == NULL) {
printf("Memory allocation failed.\n");
return 1;
}
// Accessing and assigning values to struct members
ptrPoint->x = 10;
ptrPoint->y = 20;
// Displaying values
printf("Coordinates: x=%d, y=%d\n", ptrPoint->x, ptrPoint->y);
// Free dynamically allocated memory
free(ptrPoint);
return 0;
}