Corrosion in pipelines and reservoir tanks in oil plants is a serious problem in the global energy industry because it causes substantial economic losses associated with frequent part replacement and can lead to potential damage to entire crude oil fields. Previous studies revealed that corrosion is mainly caused by microbial activities in a process currently termed microbiologically influenced corrosion or biocorrosion. Identifying the bacteria responsible for biocorrosion is crucial for its suppression. In this study, we analyzed the microbial communities present at corrosion sites in oil plant pipelines using comparative metagenomic analysis along with bioinformatics and statistics. find more We analyzed the microbial communities in pipelines in an oil field in which groundwater is used as injection water. We collected samples from four different facilities in the oil field. Metagenomic analysis revealed that the microbial community structures greatly differed even among samples from the same facility. Treatments such as biocide administration and demineralization at each location in the pipeline may have independently affected the microbial community structure. The results indicated that microbial inspection throughout the pipeline network is essential to prevent biocorrosion at industrial plants. By identifying the bacterial species responsible for biocorrosion, this study provides bacterial indicators to detect and classify biocorrosion. Furthermore, these species may serve as biomarkers to detect biocorrosion at an early stage. Then, appropriate management such as treatment with suitable biocides can be performed immediately and appropriately. Thus, our study will serve as a platform for obtaining microbial information related to biocorrosion to enable the development of a practical approach to prevent its occurrence.Electron transfer flavoprotein (ETF) is an enzyme with orthologs from bacteria to humans. Human ETF is nuclear encoded by two separate genes, ETFA and ETFB, respectively. After translation, the two subunits are imported to the mitochondrial matrix space and assemble into a heterodimer containing one FAD and one AMP as cofactors. ETF functions as a hub taking up electrons from at least 14 flavoenzymes, feeding them into the respiratory chain. This represents a major source of reducing power for the electron transport chain from fatty acid oxidation and amino acid degradation. Transfer of electrons from the donor enzymes to ETF occurs by direct transfer between the enzyme bound flavins, a process that is tightly regulated by the polypeptide chain and by proteinprotein interactions. ETF, in turn relays electrons to the iron sulfur cluster of the inner membrane protein ETFQO, from where they travel via the FAD in ETFQO to ubiquinone, entering the respiratory chain at the level of complex III. ETF recognizes its dehydrogenase partners via a recognition loop that anchors the protein on its partner followed by dynamic movements of the ETF flavin domain that bring redox cofactors in close proximity, thus promoting electron transfer. Genetic mutations in the ETFA or ETFB genes cause the Mendelian disorder multiple acyl-CoA dehydrogenase deficiency (MADD; OMIM #231680). We here review the knowledge on human ETF and investigations of the effects of disease-associated missense mutations in this protein that have promoted the understanding of the essential role that ETF plays in cellular metabolism and human disease.
Leptin (LEP), leptin receptor (LEPR) and peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC1A) are involved in the pathogenesis of multiple sclerosis (MS) by affecting the inflammatory response and reactive oxygen species production. LEP rs7799039 and LEPR rs1137101 genetic variants modify the serum LEP levels and PGC1A rs8192678 alters the PGC1A activity. The study objective was to explore the associations of these variants with susceptibility to MS, disease course/clinical parameters and also with peripheral blood mononuclear cell expression of the target genes and plasma LEP concentrations, in the study subjects.
The study groups included 528 patients with MS and 429 controls. TaqMan® assays were used for genotyping and gene expression quantification. The Chi-square, parametric and nonparametric tests and simple/multiple logistic regression were performed for the statistical analysis of data.
A multiple logistic regression model including all three investigated variants, applied to patients (RRMS+SPMS) and controls, showed that PGC1A rs8192678 minor allele had an increased risk for the occurrence of disease, with OR (95%CI)=1,32 (1,01-1,73), P=0,04. Between-effect of gender and LEPR variant on the multiple sclerosis severity score (MSSS) was identified (P=0,005). In male patients (relapsing-remitting and secondary progressive), LEPR minor allele carriers had increased MSSS (GG+AG vs AA, median (minimum-maximum)=5,38 (0,64-9,88) vs 4,27 (0,78-9,63); P=0,01, P
=0,03). In relapsing-remitting patients LEP rs7799039 affected the LEP gene expression (P=0,006; P
=0,04).
The current findings implicate an impact of investigated genetic variants on the pathogenesis of MS.
The current findings implicate an impact of investigated genetic variants on the pathogenesis of MS.G-protein-coupled receptor GPR10 is expressed in brain areas regulating energy metabolism. In this study, the effects of GPR10 gene deficiency on energy homeostasis in mice of both sexes fed either standard chow or a high-fat diet (HFD) were studied, with a focus on neuronal activation of PrRP neurons, and adipose tissue and liver metabolism. GPR10 deficiency in males upregulated the phasic and tonic activity of PrRP neurons in the nucleus of the solitary tract. GPR10 knockout (KO) males on a standard diet displayed a higher body weight than their wild-type (WT) littermates due to an increase in adipose tissue mass; however, HFD feeding did not cause weight differences between genotypes. Expression of lipogenesis genes was suppressed in the subcutaneous adipose tissue of GPR10 KO males. In contrast, GPR10 KO females did not differ in body weight from their WT controls, but showed elevated expression of lipid metabolism genes in the liver and subcutaneous adipose tissue compared to WT controls. An attenuated non-esterified fatty acids change after glucose load compared to WT controls suggested a defect in insulin-mediated suppression of lipolysis in GPR10 KO females.find more