Four Types of Bar Charts in Python - Based on Tabular Data

Luca Liu - Mar 15 - - Dev Community

Simple Bar Charts in Python Based on Tabular Data

import matplotlib.pyplot as plt
import pandas as pd

df = pd.DataFrame({'x': ['A', 'B', 'C', 'D', 'E'],
                   'y': [50, 30, 70, 80, 60]})

plt.bar(df['x'], df['y'], align='center', width=0.5, color='b', label='data')
plt.xlabel('X axis')
plt.ylabel('Y axis')
plt.title('Bar chart')
plt.legend()
plt.show()
Enter fullscreen mode Exit fullscreen mode

Image description

Stacked bar chart in Python Based on Tabular Data

import matplotlib.pyplot as plt
import pandas as pd

df = pd.DataFrame({'x': ['A', 'B', 'C', 'D', 'E'],
                   'y1': [50, 30, 70, 80, 60],
                   'y2': [20, 40, 10, 50, 30]})

plt.bar(df['x'], df['y1'], align='center', width=0.5, color='b', label='Series 1')
plt.bar(df['x'], df['y2'], bottom=df['y1'], align='center', width=0.5, color='g', label='Series 2')
plt.xlabel('X axis')
plt.ylabel('Y axis')
plt.title('Stacked Bar Chart')
plt.legend()
plt.show()
Enter fullscreen mode Exit fullscreen mode

Image description

Grouped bar chart based on Tabular Data in Python

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

# Prepare the data
df = pd.DataFrame({
    'group': ['G1', 'G2', 'G3', 'G4', 'G5'],
    'men_means': [20, 35, 30, 35, 27],
    'women_means': [25, 32, 34, 20, 25]
})
ind = np.arange(len(df))  # x-axis position
width = 0.35  # width of each bar

# Plot the bar chart
fig, ax = plt.subplots()
rects1 = ax.bar(ind, df['men_means'], width, color='r')
rects2 = ax.bar(ind + width, df['women_means'], width, color='y')

# Add labels, legend, and axis labels
ax.set_xticks(ind + width / 2)
ax.set_xticklabels(df['group'])
ax.legend((rects1[0], rects2[0]), ('Men', 'Women'))
ax.set_xlabel('Groups')
ax.set_ylabel('Scores')

# Display the plot
plt.show()

Enter fullscreen mode Exit fullscreen mode

Image description

Percent stacked bar chart based on Tabular Data in Python

import matplotlib.pyplot as plt
import pandas as pd

# Prepare the data
df = pd.DataFrame({
    'x': ['Group 1', 'Group 2', 'Group 3', 'Group 4', 'Group 5'],
    'y1': [10, 20, 30, 25, 30],
    'y2': [20, 25, 30, 15, 20],
    'y3': [30, 30, 25, 20, 10]
})

# calculate percentage
y_percent = df.iloc[:, 1:].div(df.iloc[:, 1:].sum(axis=1), axis=0) * 100

# plot the chart
fig, ax = plt.subplots()
ax.bar(df['x'], y_percent.iloc[:, 0], label='Series 1', color='r')
ax.bar(df['x'], y_percent.iloc[:, 1], bottom=y_percent.iloc[:, 0], label='Series 2', color='g')
ax.bar(df['x'], y_percent.iloc[:, 2], bottom=y_percent.iloc[:, :2].sum(axis=1), label='Series 3', color='b')

# Display the plot
plt.show()
Enter fullscreen mode Exit fullscreen mode

Image description

Explore more

Thank you for taking the time to explore data-related insights with me. I appreciate your engagement.

๐Ÿš€ Connect with me on LinkedIn

๐ŸŽƒ Connect with me on X

๐ŸŒ Connect with me on Instagram

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .