Messaging Control with Kafka and Spring Boot: A Practical Guide

Matheus Martinello - Aug 30 - - Dev Community

In microservices architectures, asynchronous communication between services is crucial for ensuring system scalability and resilience. Apache Kafka, a distributed streaming platform, has become one of the most popular tools for this purpose. In this post, we'll explore how to set up and integrate Kafka with Spring Boot to manage message exchange between services efficiently and robustly.

  1. Setting Up the Environment Before we start coding, we need to set up our development environment. If you don't have Apache Kafka installed yet, you can easily set it up using Docker, creating a docker-compose.yml:
services:
  zookeeper:
    image: wurstmeister/zookeeper:3.4.6
    ports:
     - "2181:2181"
  kafka:
    image: wurstmeister/kafka:latest
    ports:
     - "9092:9092"
    environment:
      KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://localhost:9092
      KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
Enter fullscreen mode Exit fullscreen mode

With Kafka up and running, we can move on to configuring Spring Boot.

  1. Configuring Spring Boot First, create a new Spring Boot project. You can add the necessary dependencies in your pom.xml:
<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.kafka</groupId>
        <artifactId>spring-kafka</artifactId>
    </dependency>
</dependencies>

Enter fullscreen mode Exit fullscreen mode

Next, configure the application.properties to connect to Kafka:

spring.kafka.bootstrap-servers=localhost:9092
spring.kafka.consumer.group-id=group_id
spring.kafka.consumer.auto-offset-reset=earliest

Enter fullscreen mode Exit fullscreen mode
  1. Implementing the Message Producer Let's create a simple Spring Boot service that sends messages to a Kafka topic. First, we create a KafkaProducer.java class:
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;

@Service
public class KafkaProducer {

    private final KafkaTemplate<String, String> kafkaTemplate;

    public KafkaProducer(KafkaTemplate<String, String> kafkaTemplate) {
        this.kafkaTemplate = kafkaTemplate;
    }

    public void sendMessage(String message) {
        kafkaTemplate.send("topic_name", message);
    }
}

Enter fullscreen mode Exit fullscreen mode

We can add a REST endpoint to test sending messages:

import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class MessageController {

    private final KafkaProducer kafkaProducer;

    public MessageController(KafkaProducer kafkaProducer) {
        this.kafkaProducer = kafkaProducer;
    }

    @PostMapping("/send")
    public void sendMessage(@RequestBody String message) {
        kafkaProducer.sendMessage(message);
    }
}

Enter fullscreen mode Exit fullscreen mode
  1. Implementing the Message Consumer Now, let's create a consumer to receive these messages. The KafkaConsumer class might look like this:
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Service;

@Service
public class KafkaConsumer {

    @KafkaListener(topics = "topic_name", groupId = "group_id")
    public void consume(String message) {
        System.out.println("Message received: " + message);
    }
}

Enter fullscreen mode Exit fullscreen mode

With this implementation, every time a message is sent to Kafka, the consumer will receive and process it.

Integrating Apache Kafka with Spring Boot is a powerful combination for managing asynchronous communication in microservices architectures. In this post, we set up the environment, created a producer and a consumer, and tested our application. This is just the beginning – Kafka offers many other advanced features that you can explore to make your architecture even more resilient and scalable. I hope this tutorial was helpful to you! If you have any questions or suggestions, feel free to leave a comment below.

. . . . . . . . . . . .