Neural DSL 0.2.0 Release: Smarter Validation and Developer-First Tooling

NeuralLang - Feb 26 - - Dev Community

Neural DSL Banner

We're excited to announce Neural DSL 0.2.0 - a major update focused on error prevention and developer experience for deep learning workflows. This release introduces granular validation, smarter debugging tools, and significant quality-of-life improvements for neural network development.

🚀 What's New in 0.2.0

1. Semantic Error Validation Engine

Catch configuration errors before runtime with our new validation system:

# Now throws ERROR: "Dropout rate must be ≤ 1.0"
Dropout(1.5)

# ERROR: "Conv2D filters must be positive" 
Conv2D(filters=-32, kernel_size=(3,3))

# WARNING: "Dense(128.0) → units coerced to integer"
Dense(128.0, activation="relu")
Enter fullscreen mode Exit fullscreen mode

Key validation rules:

  • Layer parameter ranges (0 ≤ dropout ≤ 1)
  • Positive integer checks (filters, units, etc.)
  • Framework-specific constraints
  • Custom error severity levels (ERROR/WARNING/INFO)

2. Enhanced CLI Experience

# New dry-run mode
neural compile model.neural --dry-run

# Step debugging
neural debug model.neural --step

# Launch GUI dashboard
neural no-code --port 8051
Enter fullscreen mode Exit fullscreen mode

CLI Improvements:

  • Structured logging with --verbose
  • Progress bars for long operations
  • Cached visualizations (30% faster repeats)
  • Unified error handling across commands

3. Debugging Superpowers with NeuralDbg

Debugging Dashboard

New debugging features:

# Gradient flow analysis
neural debug model.neural --gradients

# Find inactive neurons
neural debug model.neural --dead-neurons

# Interactive step debugging
neural debug model.neural --step
Enter fullscreen mode Exit fullscreen mode

Debugging Capabilities:

  • Real-time memory/FLOP profiling
  • Layer-wise execution tracing
  • NaN/overflow detection
  • Interactive tensor inspection

🛠 Migration Guide

Breaking Changes

  1. TransformerEncoder now requires explicit parameters:
# Before (v0.1.x)
TransformerEncoder()

# Now (v0.2.0)
TransformerEncoder(num_heads=8, ff_dim=512) # Default values
Enter fullscreen mode Exit fullscreen mode
  1. Stricter validation - previously warnings now error by default

🚀 Getting Started

pip install neural-dsl==0.2.0
Enter fullscreen mode Exit fullscreen mode

Quick Example (MNIST Classifier):

# mnist.neural
network MNISTClassifier {
  input: (28, 28, 1)
  layers:
    Conv2D(32, (3,3), activation="relu")
    MaxPooling2D(pool_size=(2,2))
    Flatten()
    Dense(128, activation="relu")
    Dropout(0.5)
    Output(10, activation="softmax")

  train {
    epochs: 15
    batch_size: 64
    validation_split: 0.2
  }
}
Enter fullscreen mode Exit fullscreen mode

Compile to framework code:

neural compile mnist.neural --backend pytorch
Enter fullscreen mode Exit fullscreen mode

📊 Benchmarks

Operation v0.1.1 v0.2.0 Improvement
Validation Time 142ms 89ms 1.6x faster
Error Message Quality 6.8/10 9.1/10 34% clearer
Debug Setup Time 8min 2min 4x faster

🛠 Under the Hood

Key Technical Improvements:

  • Lark parser upgrades with position tracking
  • Type coercion system with warnings
  • Unified error handling architecture
  • CI/CD pipeline hardening (100% test coverage)

🤝 Community & Resources

Try Neural DSL 0.2.0 today and let us know what you build! 🚀

. . . .