Omics technologies offer unprecedented perspectives for the rational investigation of complex biological systems. Indeed, omics present the ability of offering an extensive perception of the biochemistry and physiology of the cell and of any perturbing consequences of contaminants through the joint investigation of thousands of molecular responses simultaneously; then it has recently conducted to a fervent attention by research ecotoxicologists. Beyond the presentation of latest advances, exemplified here by omics investigation of cyanobacterial deleterious effects on various fishes (at various experimental and biological scales and with various analytical tools and pipeline), the present review paper re-explores the promising perspectives and also the pitfalls of such holistic investigations of the ecotoxicological response of organisms for environmental assessment.Cadmium isotopic compositions in non-contaminated systems and anthropogenic sources of Cd generally have different isotopic signatures. Cadmium isotopes, as a novel tracer, can be useful for fingerprinting the anthropogenic Cd sources, providing a promising source tracing technique in environmental studies. This review presents (i) analytical techniques for Cd isotopic composition; (ii) isotopic signatures of Cd derived from anthropogenic activities; (iii) isotopic compositions of Cd in the industrial-impacted environmental samples; (iv) cadmium isotopic fractionation induced by geochemical process. Finally, the perspectives of using Cd isotopic compositions in environmental studies are also briefly discussed.Elemental composition of food can be used to determine nutritional potential as well as guiding legislation for establishing maximum acceptable limits (MAL) of metals in consumption products. This study aimed to determine the elemental background levels of yerba mate (Ilex paraguariensis A.St.-Hil.) under varied geologic formations in southern Brazil. Mature leaves were randomly collected from four wild-grown plants at thirty native sites in three states and analyzed for 32 elements. Since yerba mate is not washed to obtain the final product, leaves were analyzed with and without washing to assess foliar deposition. Concentration values of As, Ag, Be, Cs, Cr, Li, Se, Tl, U, and V were near detection limits, indicating low potential as a source and/or toxicity to the consumer. Washing decreased concentrations of Fe, Ti, As, Mo, Li, V, and Pb, suggesting atmospheric contributions/dust deposition. Concentrations of Mn (very high), Zn (high), and Ni (high) demonstrated that leaves could be an important source of these elements. Soil parent material affected elemental composition with basalt providing higher concentrations of Mn, P, and Co while Rhyodacite provided higher concentrations of K and Na. All samples exhibited Pb values below the MAL of 0.6 mg kg-1, but 23% of washed leaves and 20% of unwashed leaves had Cd concentrations close to or above the MAL value of 0.4 mg kg-1. Study results indicated that Cd MAL values for yerba mate in southern Brazil should be reassessed.Dietary characteristics and oxidative stress are closely linked to the wellbeing of individuals. In recent years, various urinary biomarkers of food and oxidative stress have been proposed for use in wastewater-based epidemiology (WBE), in efforts to objectively monitor the food consumed and the oxidative stress experienced by individuals in a wastewater catchment. However, it is not clear whether such biomarkers are suitable for wastewater-based epidemiology. This study presents a suite of 30 urinary food and oxidative stress biomarkers and evaluates their applicability for WBE studies. This includes 22 biomarkers which were not previously considered for WBE studies. Daily per capita loads of biomarkers were measured from 57 wastewater influent samples from nine Australian catchments. Stability of biomarkers were assessed using laboratory scale sewer reactors. Biomarkers of consumption of vitamin B2, vitamin B3 and fibre, as well as a component of citrus had per capita loads in line with reported literature values despite susceptibility of degradation in sewer reactors. Consumption biomarkers of red meat, fish, fruit, other vitamins and biomarkers of stress had per capita values inconsistent with literature findings, and/or degraded rapidly in sewer reactors, indicating that they are unsuitable for use as WBE biomarkers in the traditional quantitative sense. Apamin cost This study serves to communicate the suitability of food and oxidative stress biomarkers for future WBE research.In choosing environmental regulatory instrument and setting standards, a government relies on an Environmental Protection Bureau's (EPB) informational advantage, even though these two entities may have different preferences for internalizing environmental damage. A three-level hierarchical model between the government, the EPB and polluting firms is constructed to derive the government's optimal delegation policy for the EPB. Given the uncertainty in firms' costs and asymmetric information on transaction costs, this paper presents a demonstration of the communication process between the government and the EPB in formulating the standards of environmental regulation and choosing between the instruments of emission trading and tax schemes. This paper seeks to determine how the decisions in the environmental regulation should be delegated for the government to trade-off the cost to it of EPB's discretion versus the benefits of taking advantage of the EFB's expertise. Results suggest the bureaucratic political issue leads to a tendency towards either an emission trading or a tax scheme, depending on the direction of the EPB's environmental preferences. Compared with the case where only emission trading can be chosen, the choice of instrument results in less discretion left to the EPB in setting up the trading emission allowance and a higher tax, irrespective of whether the EPB is more or less concerned about the environmental damage than the government.Shallow urban lakes are important urban ecosystems; however, these systems are subject to severe polycyclic aromatic hydrocarbons (PAHs) contamination. An understanding of the distribution and dynamics of PAHs in lakes is required to restore the functions of lake ecosystems and to ensure the ecological security of urban water sources. The Quantitative Water Air Sediment Interaction (QWASI) model and partition coefficient and fugacity fraction methods were applied to estimate the multimedia transfers of PAHs in Dianshan Lake, a typical shallow lake in Shanghai, China. In addition, some new concepts and methods related to PAH transfers were introduced. The results showed that while the gas-solid partition in the area remained in non-equilibrium, the influence of pollution sources tended to weaken. Atmospheric advection was the main source of PAHs to the lake, and a portion of the net loss of advection was transformed into total flux of cross-interface transfers, in which transport fluxes from air to water and from water to sediment were dominant, with a significant correlation between the two types of transfer.Apamin cost