Hi,
I want to test a small LLM program and I decided to do it with tensorflow .
My source code is available in https://github.com/victordalet/first_llm
I - Requirements
You need to install tensorflow
and numpy
pip install 'numpy<2'
pip install tensorflow
II - Create Dataset
You need to make a data
string array to countain a small dataset, for example I create :
data = [
"Salut comment ca va",
"Je suis en train de coder",
"Le machine learning est une branche de l'intelligence artificielle",
"Le deep learning est une branche du machine learning",
]
You can find a dataset on kaggle if you're not inspired.
III - Build model and train it
To do this, I create a small LLM class with the various methods.
class LLM:
def __init__(self):
self.model = None
self.max_sequence_length = None
self.input_sequences = None
self.total_words = None
self.tokenizer = None
self.tokenize()
self.create_input_sequences()
self.create_model()
self.train()
test_sentence = "Pour moi le machine learning est"
print(self.test(test_sentence, 10))
def tokenize(self):
self.tokenizer = Tokenizer()
self.tokenizer.fit_on_texts(data)
self.total_words = len(self.tokenizer.word_index) + 1
def create_input_sequences(self):
self.input_sequences = []
for line in data:
token_list = self.tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i + 1]
self.input_sequences.append(n_gram_sequence)
self.max_sequence_length = max([len(x) for x in self.input_sequences])
self.input_sequences = pad_sequences(self.input_sequences, maxlen=self.max_sequence_length, padding='pre')
def create_model(self):
self.model = Sequential()
self.model.add(Embedding(self.total_words, 100, input_length=self.max_sequence_length - 1))
self.model.add(LSTM(150, return_sequences=True))
self.model.add(Dropout(0.2))
self.model.add(LSTM(100))
self.model.add(Dense(self.total_words, activation='softmax'))
def train(self):
self.model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
X, y = self.input_sequences[:, :-1], self.input_sequences[:, -1]
y = tf.keras.utils.to_categorical(y, num_classes=self.total_words)
self.model.fit(X, y, epochs=200, verbose=1)
IV - Test
Finally, I test the model, with a test method called in the constructor of my classes.
Warning: I block generation in this test function if the word generated is identical to the previous one.
def test(self, sentence: str, nb_word_to_generate: int):
last_word = ""
for _ in range(nb_word_to_generate):
token_list = self.tokenizer.texts_to_sequences([sentence])[0]
token_list = pad_sequences([token_list], maxlen=self.max_sequence_length - 1, padding='pre')
predicted = np.argmax(self.model.predict(token_list), axis=-1)
output_word = ""
for word, index in self.tokenizer.word_index.items():
if index == predicted:
output_word = word
break
if last_word == output_word:
return sentence
sentence += " " + output_word
last_word = output_word
return sentence