The first highly enantioselective catalytic synthesis of P-stereogenic secondary phosphine-boranes was realized by the asymmetric addition of primary phosphine to electron-deficient alkenes with a newly developed unsymmetric bisphosphine (PCP') pincer-nickel complex. selleck Various P-stereogenic secondary phosphine-boranes were obtained in 57-92% yields with up to 99% ee and >201 dr. The follow-up alkylation upon P-C bond formation with alkyl halides provided a practical way to access P-chiral compounds with diverse functional groups.This Feature introduces and discusses the findings of key analytical techniques used to study planetary bodies in our solar system in the search for life beyond Earth, future missions planned for high-priority astrobiology targets in our solar system, and the challenges we face in performing these investigations.In the present work, a novel workflow based on complementary gas-phase separations for the identification of isomeric PAHs from complex mixtures is described. This is the first report on the coupling of gas chromatography (GC), atmospheric pressure laser ionization (APLI), and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) for the characterization of polycyclic aromatic hydrocarbons. Over a hundred known unknowns are uniquely identified based on the molecular ion retention indices I (5%), mobility (RSD less then 0.6% and R = 50-90 with Sr = 0.18 V/ms), mobility-based theoretical candidate assignment ( less then 3%), accurate mass chemical formula assignment ( less then 2 ppm), and electron impact fragmentation pattern and database search. The advantages of theoretical modeling of PAHs and similar compounds were evaluated using candidate structures ranked by retention indices and fragmentation pattern from GC-EI-MS data sets. Over 20 PAH isomeric and deuterated standards were utilized for the GC-APLI-TIMS-TOF MS workflow validation. Noteworthy is the analytical capability for untargeted screening of isomeric and isobaric compounds with additional characterization metrics not available in traditional GC-EI-MSn workflows.For decades, the tight regulatory functions of DNA and RNA have been the focus of extensive research with the goal of harnessing RNA molecules (e.g., microRNA and small interfering RNA) to control gene expression and to study biological functions. RNA interference (RNAi) has shown evidence of mediating gene expression, has been utilized to study functional genomics, and recently has potential in therapeutic agents. RNAi is a natural mechanism and a well-studied tool that can be used to silence specific genes. This method is also used in aquaculture as a research tool and to enhance immune responses. RNAi methods do have their limitations (e.g., immune triggering); efficient and easy-to-use RNAi methods for large-scale applications need further development. Despite these limitations, RNAi methods have been successfully used in aquaculture, in particular shrimp. This review discusses the uses of RNAi in aquaculture, such as immune- and production-related issues and the possible limitations that may hinder the application of RNAi in the aquaculture industry. Our challenge is to develop a highly potent in vivo RNAi delivery platform that could complete the desired action with minimal side effects and which can be applied on a large-scale with relatively little expense in the aquaculture industry.Variability is a key feature and challenge of future energy systems, especially ones with emissions reduction targets. Higher variable renewables deployment, increasing electrification, and climate change impacts increase supply, demand, and price variability. These changes provide opportunities for technologies, markets, and policies to mitigate this variability but also pose difficulties for planners and policymakers. This article summarizes the sources and impacts of variability in deeply decarbonized electricity systems, approaches for managing it, implications for modeling, and emerging research needs. It aims to synthesize the main insights on variability from the literature for subject matter experts in a range of fields and consumers of model outputs. This primer is relevant not only to increasing the understanding of interconnected sociotechnical systems where variability is a distinguishing feature but also to highlighting research gaps where interdisciplinary collaborations are increasingly valuable.Electronic doping of transition-metal oxides (TMOs) is typically accomplished through the synthesis of nonstoichiometric oxide compositions and the subsequent ionization of intrinsic lattice defects. As a result, ambipolar doping of wide-band-gap TMOs is difficult to achieve because the formation energies and stabilities of vacancy and interstitial defects vary widely as a function of the oxide composition and crystal structure. The facile formation of lattice defects for one carrier type is frequently paired with the high-energy and unstable generation of defects required for the opposite carrier polarity. Previous work from our group showed that the brucite (β-phase) layered metal hydroxides of Co and Ni, intrinsically p-type materials in their anhydrous three-dimensional forms, could be n-doped using a strong chemical reductant. In this work, we extend the electron-doping study to the α polymorph of Co(OH)2 and elucidate the defects responsible for n-type doping in these two-dimensional materials. Through structural and electronic comparisons between the α, β, and rock-salt structures within the cobalt (hydr)oxide family of materials, we show that both layered structures exhibit facile formation of anion vacancies, the necessary defect for n-type doping, that are not accessible in the cubic CoO structure. However, the brucite polymorph is much more stable to reductive decomposition in the presence of doped electrons because of its tighter layer-to-layer stacking and octahedral coordination geometry, which results in a maximum conductivity of 10-4 S/cm, 2 orders of magnitude higher than the maximum value attainable on the α-Co(OH)2 structure.Perovskite solar cells (PSCs) with organic hole transporting layers (o-HTLs) have been widely studied due to their convenient solution processing, but it remains a big challenge to improve the hole mobilities of commercially available organic hole transporting materials without ion doping while maintaining the stability of PSCs. In this work, we demonstrated that the introduction of perovskite quantum dots (QDs) as interlayers between perovskite layers and dopant-free o-HTLs (P3HT, PTAA, Spiro-OMeTAD) resulted in a significantly enhanced performance of PSCs. The universal role of QDs in improving the efficiency and stability of PSCs was validated, exceeding that of lithium doping. After a deep examination of the mechanism, QD interlayers provided the multifunctional roles as follows (1) passivating the perovskite surface to reduce the overall amount of trap states; (2) promoting hole extraction from perovskite to dopant-free o-HTLs by forming cascade energy levels; (3) improving hole mobilities of dopant-free o-HTLs by regulating their polymer/molecule orientation.selleck