*Memos:
-
My post explains GaussianBlur() about
kernel_size
argument. -
My post explains GaussianBlur() about
kernel_size=[a, b]
andsigma=50
. - My post explains OxfordIIITPet().
GaussianBlur() can randomly blur an image as shown below. *It's about sigma
argument:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import GaussianBlur
origin_data = OxfordIIITPet(
root="data",
transform=None
)
ks1s01_data = OxfordIIITPet( # `ks` is kernel_size.
root="data",
transform=GaussianBlur(kernel_size=1, sigma=0.1)
)
ks1s1_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=1, sigma=1)
)
ks1s5_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=1, sigma=5)
)
ks1s10_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=1, sigma=10)
)
ks1s15_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=1, sigma=15)
)
ks1s25_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=1, sigma=25)
)
ks1s50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=1, sigma=50)
)
ks1s01_50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=1, sigma=[0.1, 50])
)
ks1s01_10_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=1, sigma=[0.1, 10])
)
ks1s10_50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=1, sigma=[10, 50])
)
ks101s01_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=101, sigma=0.1)
)
ks101s1_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=101, sigma=1)
)
ks101s5_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=101, sigma=5)
)
ks101s10_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=101, sigma=10)
)
ks101s15_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=101, sigma=15)
)
ks101s25_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=101, sigma=25)
)
ks101s50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=101, sigma=50)
)
ks101s01_50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=101, sigma=[0.1, 50])
)
ks101s01_10_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=101, sigma=[0.1, 10])
)
ks101s10_50_data = OxfordIIITPet(
root="data",
transform=GaussianBlur(kernel_size=101, sigma=[10, 50])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1s01_data, main_title="ks1s01_data")
show_images1(data=ks1s1_data, main_title="ks1s1_data")
show_images1(data=ks1s5_data, main_title="ks1s5_data")
show_images1(data=ks1s10_data, main_title="ks1s10_data")
show_images1(data=ks1s15_data, main_title="ks1s15_data")
show_images1(data=ks1s25_data, main_title="ks1s25_data")
show_images1(data=ks1s50_data, main_title="ks1s50_data")
show_images1(data=ks1s01_50_data, main_title="ks1s01_50_data")
show_images1(data=ks1s01_10_data, main_title="ks1s01_10_data")
show_images1(data=ks1s10_50_data, main_title="ks1s10_50_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks101s01_data, main_title="ks101s01_data")
show_images1(data=ks101s1_data, main_title="ks101s1_data")
show_images1(data=ks101s5_data, main_title="ks101s5_data")
show_images1(data=ks101s10_data, main_title="ks101s10_data")
show_images1(data=ks101s15_data, main_title="ks101s15_data")
show_images1(data=ks101s25_data, main_title="ks101s25_data")
show_images1(data=ks101s50_data, main_title="ks101s50_data")
show_images1(data=ks101s01_50_data, main_title="ks101s01_50_data")
show_images1(data=ks101s01_10_data, main_title="ks101s01_10_data")
show_images1(data=ks101s10_50_data, main_title="ks101s10_50_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, ks=None, s=(0.1, 2.0)):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if ks:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
gb = GaussianBlur(kernel_size=ks, sigma=s)
plt.imshow(X=gb(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1s01_data", ks=1, s=0.1)
show_images2(data=origin_data, main_title="ks1s1_data", ks=1, s=1)
show_images2(data=origin_data, main_title="ks1s5_data", ks=1, s=5)
show_images2(data=origin_data, main_title="ks1s10_data", ks=1, s=10)
show_images2(data=origin_data, main_title="ks1s15_data", ks=1, s=15)
show_images2(data=origin_data, main_title="ks1s25_data", ks=1, s=25)
show_images2(data=origin_data, main_title="ks1s50_data", ks=1, s=50)
show_images2(data=origin_data, main_title="ks1s01_50_data", ks=1,
s=[0.1, 50])
show_images2(data=origin_data, main_title="ks1s01_10_data", ks=1,
s=[0.1, 10])
show_images2(data=origin_data, main_title="ks1s10_50_data", ks=1,
s=[10, 50])
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks101s01_data", ks=101, s=0.1)
show_images2(data=origin_data, main_title="ks101s1_data", ks=101, s=1)
show_images2(data=origin_data, main_title="ks101s5_data", ks=101, s=5)
show_images2(data=origin_data, main_title="ks101s10_data", ks=101, s=10)
show_images2(data=origin_data, main_title="ks101s15_data", ks=101, s=15)
show_images2(data=origin_data, main_title="ks101s25_data", ks=101, s=25)
show_images2(data=origin_data, main_title="ks101s50_data", ks=101, s=50)
show_images2(data=origin_data, main_title="ks101s01_50_data", ks=101,
s=[0.1, 50])
show_images2(data=origin_data, main_title="ks101s01_10_data", ks=101,
s=[0.1, 10])
show_images2(data=origin_data, main_title="ks101s10_50_data", ks=101,
s=[10, 50])