GaussianBlur in PyTorch (2)

Super Kai (Kazuya Ito) - Feb 16 - - Dev Community

Buy Me a Coffee

*Memos:

GaussianBlur() can randomly blur an image as shown below. *It's about sigma argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import GaussianBlur

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

ks1s01_data = OxfordIIITPet( # `ks` is kernel_size.
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=0.1)
)

ks1s1_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=1)
)

ks1s5_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=5)
)

ks1s10_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=10)
)

ks1s15_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=15)
)

ks1s25_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=25)
)

ks1s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=50)
)

ks1s01_50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=[0.1, 50])
)

ks1s01_10_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=[0.1, 10])
)

ks1s10_50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=[10, 50])
)

ks101s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=0.1)
)

ks101s1_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=1)
)

ks101s5_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=5)
)

ks101s10_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=10)
)

ks101s15_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=15)
)

ks101s25_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=25)
)

ks101s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=50)
)

ks101s01_50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=[0.1, 50])
)

ks101s01_10_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=[0.1, 10])
)

ks101s10_50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=[10, 50])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1s01_data, main_title="ks1s01_data")
show_images1(data=ks1s1_data, main_title="ks1s1_data")
show_images1(data=ks1s5_data, main_title="ks1s5_data")
show_images1(data=ks1s10_data, main_title="ks1s10_data")
show_images1(data=ks1s15_data, main_title="ks1s15_data")
show_images1(data=ks1s25_data, main_title="ks1s25_data")
show_images1(data=ks1s50_data, main_title="ks1s50_data")
show_images1(data=ks1s01_50_data, main_title="ks1s01_50_data")
show_images1(data=ks1s01_10_data, main_title="ks1s01_10_data")
show_images1(data=ks1s10_50_data, main_title="ks1s10_50_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks101s01_data, main_title="ks101s01_data")
show_images1(data=ks101s1_data, main_title="ks101s1_data")
show_images1(data=ks101s5_data, main_title="ks101s5_data")
show_images1(data=ks101s10_data, main_title="ks101s10_data")
show_images1(data=ks101s15_data, main_title="ks101s15_data")
show_images1(data=ks101s25_data, main_title="ks101s25_data")
show_images1(data=ks101s50_data, main_title="ks101s50_data")
show_images1(data=ks101s01_50_data, main_title="ks101s01_50_data")
show_images1(data=ks101s01_10_data, main_title="ks101s01_10_data")
show_images1(data=ks101s10_50_data, main_title="ks101s10_50_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, ks=None, s=(0.1, 2.0)):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if ks:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            gb = GaussianBlur(kernel_size=ks, sigma=s)
            plt.imshow(X=gb(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1s01_data", ks=1, s=0.1)
show_images2(data=origin_data, main_title="ks1s1_data", ks=1, s=1)
show_images2(data=origin_data, main_title="ks1s5_data", ks=1, s=5)
show_images2(data=origin_data, main_title="ks1s10_data", ks=1, s=10)
show_images2(data=origin_data, main_title="ks1s15_data", ks=1, s=15)
show_images2(data=origin_data, main_title="ks1s25_data", ks=1, s=25)
show_images2(data=origin_data, main_title="ks1s50_data", ks=1, s=50)
show_images2(data=origin_data, main_title="ks1s01_50_data", ks=1,
             s=[0.1, 50])
show_images2(data=origin_data, main_title="ks1s01_10_data", ks=1,
             s=[0.1, 10])
show_images2(data=origin_data, main_title="ks1s10_50_data", ks=1,
             s=[10, 50])
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks101s01_data", ks=101, s=0.1)
show_images2(data=origin_data, main_title="ks101s1_data", ks=101, s=1)
show_images2(data=origin_data, main_title="ks101s5_data", ks=101, s=5)
show_images2(data=origin_data, main_title="ks101s10_data", ks=101, s=10)
show_images2(data=origin_data, main_title="ks101s15_data", ks=101, s=15)
show_images2(data=origin_data, main_title="ks101s25_data", ks=101, s=25)
show_images2(data=origin_data, main_title="ks101s50_data", ks=101, s=50)

show_images2(data=origin_data, main_title="ks101s01_50_data", ks=101,
             s=[0.1, 50])
show_images2(data=origin_data, main_title="ks101s01_10_data", ks=101,
             s=[0.1, 10])
show_images2(data=origin_data, main_title="ks101s10_50_data", ks=101,
             s=[10, 50])
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .