RandomAffine in PyTorch (2)

Super Kai (Kazuya Ito) - Feb 21 - - Dev Community

Buy Me a Coffee

*Memos:

RandomAffine() can do random rotation or random affine transformation for an image as shown below. *It's about scale argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomAffine
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

scale1_1origin_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[1, 1])
)

scale01_5_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.1, 5])
)

scale01_1_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.1, 1])
)

scale1_5_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[1, 5])
)

scale09_09_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.9, 0.9])
)

scale08_08_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.8, 0.8])
)

scale07_07_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.7, 0.7])
)

scale06_06_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.6, 0.6])
)

scale05_05_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.5, 0.5])
)

scale04_04_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.4, 0.4])
)

scale03_03_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.3, 0.3])
)

scale02_02_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.2, 0.2])
)

scale01_01_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.1, 0.1])
)

scale001_001_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.01, 0.01])
)

scale0001_0001_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[0.001, 0.001])
)

scale2_2_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[2, 2])
)

scale3_3_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[3, 3])
)

scale4_4_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[4, 4])
)

scale5_5_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[5, 5])
)

scale7_7_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[7, 7])
)

scale10_10_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[10, 10])
)

scale15_15_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[15, 15])
)

scale25_25_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[25, 25])
)

scale50_50_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[50, 50])
)

scale100_100_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[100, 100])
)

scale300_300_data = OxfordIIITPet(
    root="data",
    transform=RandomAffine(degrees=[0, 0], scale=[300, 300])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=scale1_1origin_data, main_title="scale1_1origin_data")
show_images1(data=scale01_5_data, main_title="scale01_5_data")
show_images1(data=scale01_1_data, main_title="scale01_1_data")
show_images1(data=scale1_5_data, main_title="scale1_5_data")
print()
show_images1(data=scale1_1origin_data, main_title="scale1_1origin_data")
show_images1(data=scale09_09_data, main_title="scale09_09_data")
show_images1(data=scale08_08_data, main_title="scale08_08_data")
show_images1(data=scale07_07_data, main_title="scale07_07_data")
show_images1(data=scale06_06_data, main_title="scale06_06_data")
show_images1(data=scale05_05_data, main_title="scale05_05_data")
show_images1(data=scale04_04_data, main_title="scale04_04_data")
show_images1(data=scale03_03_data, main_title="scale03_03_data")
show_images1(data=scale02_02_data, main_title="scale02_02_data")
show_images1(data=scale01_01_data, main_title="scale01_01_data")
show_images1(data=scale001_001_data, main_title="scale001_001_data")
show_images1(data=scale0001_0001_data, main_title="scale0001_0001_data")
print()
show_images1(data=scale1_1origin_data, main_title="scale1_1origin_data")
show_images1(data=scale2_2_data, main_title="scale2_2_data")
show_images1(data=scale3_3_data, main_title="scale3_3_data")
show_images1(data=scale4_4_data, main_title="scale4_4_data")
show_images1(data=scale5_5_data, main_title="scale5_5_data")
show_images1(data=scale7_7_data, main_title="scale7_7_data")
show_images1(data=scale10_10_data, main_title="scale10_10_data")
show_images1(data=scale15_15_data, main_title="scale15_15_data")
show_images1(data=scale25_25_data, main_title="scale25_25_data")
show_images1(data=scale50_50_data, main_title="scale50_50_data")
show_images1(data=scale100_100_data, main_title="scale100_100_data")
show_images1(data=scale300_300_data, main_title="scale300_300_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
def show_images2(data, main_title=None, d=None, t=None, sc=None, sh=None,
                 ip=InterpolationMode.NEAREST, f=0, c=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if d != None:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            ra = RandomAffine(degrees=d, translate=t, scale=sc, shear=sh,
                              interpolation=ip, center=c, fill=f)
            plt.imshow(X=ra(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])  
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="scale1_1origin_data", d=[0, 0], 
             sc=[1, 1])
show_images2(data=origin_data, main_title="scale09_09_data", d=[0, 0],
             sc=[0.9, 0.9])
show_images2(data=origin_data, main_title="scale08_08_data", d=[0, 0],
             sc=[0.8, 0.8])
show_images2(data=origin_data, main_title="scale07_07_data", d=[0, 0],
             sc=[0.7, 0.7])
show_images2(data=origin_data, main_title="scale06_06_data", d=[0, 0],
             sc=[0.6, 0.6])
show_images2(data=origin_data, main_title="scale05_05_data", d=[0, 0],
             sc=[0.5, 0.5])
show_images2(data=origin_data, main_title="scale04_04_data", d=[0, 0],
             sc=[0.4, 0.4])
show_images2(data=origin_data, main_title="scale03_03_data", d=[0, 0],
             sc=[0.3, 0.3])
show_images2(data=origin_data, main_title="scale02_02_data", d=[0, 0],
             sc=[0.2, 0.2])
show_images2(data=origin_data, main_title="scale01_01_data", d=[0, 0],
             sc=[0.1, 0.1])
show_images2(data=origin_data, main_title="scale001_001_data", d=[0, 0],
             sc=[0.01, 0.01])
show_images2(data=origin_data, main_title="scale0001_0001_data", d=[0, 0], 
             sc=[0.001, 0.001])
print()
show_images2(data=origin_data, main_title="scale1_1origin_data", d=[0, 0], 
             sc=[1, 1])
show_images2(data=origin_data, main_title="scale2_2_data", d=[0, 0],
             sc=[2, 2])
show_images2(data=origin_data, main_title="scale3_3_data", d=[0, 0],
             sc=[3, 3])
show_images2(data=origin_data, main_title="scale4_4_data", d=[0, 0],
             sc=[4, 4])
show_images2(data=origin_data, main_title="scale5_5_data", d=[0, 0],
             sc=[5, 5])
show_images2(data=origin_data, main_title="scale7_7_data", d=[0, 0],
             sc=[7, 7])
show_images2(data=origin_data, main_title="scale10_10_data", d=[0, 0],
             sc=[10, 10])
show_images2(data=origin_data, main_title="scale15_15_data", d=[0, 0],
             sc=[15, 15])
show_images2(data=origin_data, main_title="scale25_25_data", d=[0, 0],
             sc=[25, 25])
show_images2(data=origin_data, main_title="scale50_50_data", d=[0, 0],
             sc=[50, 50])
show_images2(data=origin_data, main_title="scale100_100_data", d=[0, 0],
             sc=[100, 100])
show_images2(data=origin_data, main_title="scale300_300_data", d=[0, 0],
             sc=[300, 300])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .